Encouraged by the success of contrastive learning on image classification tasks, we propose a new self-supervised method for the structured regression task of 3D hand pose estimation. Contrastive learning makes use of unlabeled data for the purpose of representation learning via a loss formulation that encourages the learned feature representations to be invariant under any image transformation. For 3D hand pose estimation, it too is desirable to have invariance to appearance transformation such as color jitter. However, the task requires equivariance under affine transformations, such as rotation and translation. To address this issue, we propose an equivariant contrastive objective and demonstrate its effectiveness in the context of 3D hand pose estimation. We experimentally investigate the impact of invariant and equivariant contrastive objectives and show that learning equivariant features leads to better representations for the task of 3D hand pose estimation. Furthermore, we show that standard ResNets with sufficient depth, trained on additional unlabeled data, attain improvements of up to 14.5% in PA-EPE on FreiHAND and thus achieves state-of-the-art performance without any task specific, specialized architectures. Code and models are available at https://ait.ethz.ch/projects/2021/PeCLR/


翻译:在图像分类任务对比性学习的成功鼓舞下,我们为3D手结构回归任务的结构性回归任务提出了一种新的自监督方法。对比性学习利用未贴标签的数据,以通过损失公式进行代表学习,鼓励在任何图像变换中学习到的特征表现变化不定。对于3D手作出估计,也可取的做法是对外观变异,如色彩变异等。然而,任务要求在诸如轮作和翻译等近距离变换下实现差异性变异。为解决这一问题,我们提出了一个等异性对比目标,并在3D手作出估计的背景下展示其有效性。我们实验性地调查变异性和变异性对比目标的影响,并表明学习等异性特征有助于更好地表述3D手变色估计的任务。此外,我们展示了具有足够深度的标准ResNet,受过额外无标签数据的培训,在FreiHAND的PA-EPEP中实现了高达14.5%的改进,从而在3DHPA/PEMR中实现了状态-艺术业绩,而没有任何具体的任务模型。MAR/PERMIS/专门模型。

0
下载
关闭预览

相关内容

【DeepMind】无归一化的高性能大规模图像识别
专知会员服务
8+阅读 · 2021年2月14日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
77+阅读 · 2020年6月11日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
7+阅读 · 2020年8月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员