In the image domain, excellent representations can be learned by inducing invariance to content-preserving transformations via noise contrastive learning. In this paper, we generalize contrastive learning to a wider set of transformations, and their compositions, for which either invariance or distinctiveness is sought. We show that it is not immediately obvious how existing methods such as SimCLR can be extended to do so. Instead, we introduce a number of formal requirements that all contrastive formulations must satisfy, and propose a practical construction which satisfies these requirements. In order to maximise the reach of this analysis, we express all components of noise contrastive formulations as the choice of certain generalized transformations of the data (GDTs), including data sampling. We then consider videos as an example of data in which a large variety of transformations are applicable, accounting for the extra modalities -- for which we analyze audio and text -- and the dimension of time. We find that being invariant to certain transformations and distinctive to others is critical to learning effective video representations, improving the state-of-the-art for multiple benchmarks by a large margin, and even surpassing supervised pretraining.


翻译:在图像领域,通过噪声对比学习,通过诱使内容保留变异,可以学习极好的表述方法。在本文中,我们将对比性学习概括为更广泛的变异及其组成,寻求的是这些变异或独特性。我们表明,目前尚不十分明显,如何扩大SimCLR等现有方法,以推广这些变异。相反,我们引入了一些所有变异的配方都必须满足的正式要求,并提出了符合这些要求的实用构件。为了最大限度地扩大这一分析的范围,我们把噪声变异配方的所有组成部分表述为选择数据(GDTs)的某些普遍变异(GDTs),包括数据抽样。我们随后将视频视为数据的一个范例,在其中可以应用大量变异,考虑到额外模式 -- -- 我们分析的是这些变异和文字 -- -- 以及时间的维度。我们发现,某些变异性与某些变异的配方不同,对于学习有效的视频表达方式、大范围改进多基准的状态甚至超越监督前阶段至关重要。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
14+阅读 · 2021年8月5日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
7+阅读 · 2018年5月23日
Top
微信扫码咨询专知VIP会员