View synthesis aims to generate novel views from one or more given source views. Although existing methods have achieved promising performance, they usually require paired views of different poses to learn a pixel transformation. This paper proposes an unsupervised network to learn such a pixel transformation from a single source viewpoint. In particular, the network consists of a token transformation module (TTM) that facilities the transformation of the features extracted from a source viewpoint image into an intrinsic representation with respect to a pre-defined reference pose and a view generation module (VGM) that synthesizes an arbitrary view from the representation. The learned transformation allows us to synthesize a novel view from any single source viewpoint image of unknown pose. Experiments on the widely used view synthesis datasets have demonstrated that the proposed network is able to produce comparable results to the state-of-the-art methods despite the fact that learning is unsupervised and only a single source viewpoint image is required for generating a novel view. The code will be available soon.


翻译:查看合成的目的是从一种或多种源视图中产生新观点。 虽然现有方法已经取得了有希望的性能, 但通常需要对不同面形的对等观点来学习像素变异。 本文建议建立一个不受监督的网络, 从单一源的角度学习这种像素变异。 特别是, 网络包含一个象征性变异模块( TTM ), 该模块将从源视图图像中提取的特征转换成一个内在的表达方式, 与预设的参考图像和组合表达式任意视图的生成模块( VGM ) 有关。 学习的转换使我们能够从任何单一源视图中合成一个未知面貌的新观点。 对广泛使用的合成数据集的实验显示, 拟议的网络能够产生与最新方法相似的结果, 尽管学习是不受监督的, 而生成新视图只需要单一源视图。 代码将很快可用 。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年11月27日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员