In this work, we investigate improving the generalizability of GAN-generated image detectors by performing data augmentation in the fingerprint domain. Specifically, we first separate the fingerprints and contents of the GAN-generated images using an autoencoder based GAN fingerprint extractor, followed by random perturbations of the fingerprints. Then the original fingerprints are substituted with the perturbed fingerprints and added to the original contents, to produce images that are visually invariant but with distinct fingerprints. The perturbed images can successfully imitate images generated by different GANs to improve the generalization of the detectors, which is demonstrated by the spectra visualization. To our knowledge, we are the first to conduct data augmentation in the fingerprint domain. Our work explores a novel prospect that is distinct from previous works on spatial and frequency domain augmentation. Extensive cross-GAN experiments demonstrate the effectiveness of our method compared to the state-of-the-art methods in detecting fake images generated by unknown GANs.
翻译:在这项工作中,我们通过在指纹域内进行数据扩增来改善GAN产生的图像探测器的通用性。 具体地说, 我们首先使用基于自动编码器的 GAN 指纹提取器将GAN 生成的图像的指纹和内容分离, 并随后对指纹进行随机扰动。 然后将原始指纹替换为受扰动的指纹, 并添加到原始内容中, 以产生视觉变化性但有不同指纹的图像。 被扰动的图像可以成功模仿不同GAN 生成的图像, 以改善探测器的通用性, 以光谱可视化为例证。 据我们所知, 我们首先在指纹域内进行数据扩增。 我们的工作探索了与以往的空间和频域扩增工程不同的新前景。 广泛的跨GAN 实验展示了我们的方法与最先进的检测未知GAN 生成的假图像的方法相比的有效性 。