Using real road testing to optimize autonomous driving algorithms is time-consuming and capital-intensive. To solve this problem, we propose a GAN-based model that is capable of generating high-quality images across different domains. We further leverage Contrastive Learning to train the model in a self-supervised way using image data acquired in the real world using real sensors and simulated images from 3D games. In this paper, we also apply an Attention Mechanism module to emphasize features that contain more information about the source domain according to their measurement of significance. Finally, the generated images are used as datasets to train neural networks to perform a variety of downstream tasks to verify that the approach can fill in the gaps between the virtual and real worlds.
翻译:使用真正的道路测试来优化自主驱动算法既耗时又耗资资本。 为了解决这个问题, 我们提出一个基于GAN的模型, 能够在不同领域生成高质量的图像。 我们进一步利用对比性学习, 利用在现实世界中利用真实传感器和3D游戏模拟图像获得的图像数据, 以自我监督的方式对模型进行培训。 在本文中, 我们还应用一个关注机制模块, 以强调包含更多关于源域的信息的特征, 根据其重要性的测量值。 最后, 生成的图像被用作数据集, 用于培训神经网络, 以完成各种下游任务, 以核实该方法能够填补虚拟世界与真实世界之间的差距 。