项目名称: 不同垒层厚度并掺杂的GaNAs基短周期超晶格太阳能电池与MBE生长研究

项目编号: No.61274134

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 郑新和

作者单位: 北京科技大学

项目金额: 86万元

中文摘要: Ge衬底上吸收带边为1.0eV的晶格匹配型GaInNAs基电池是高效多结聚光光伏电池的重要方案之一。目前限制效率提升的问题主要是GaInNAs材料中In、N共存引起的缺陷、厚膜中有限的少子扩散长度和较高的串联阻抗导致的低短路电流密度,这也是设计多结电池的主要考虑。本项目提出在Ge衬底上使用不同垒层厚度并掺杂的两种GaNAs/InGaAs短周期超晶格作为电池有源区,以此研究实现高短路电流密度的基础问题和相关材料的MBE生长。分析设计超晶格带隙随N浓度、垒层厚度、超晶格周期等的变化,获得1eV带边时这些参数的相互关系;研究不同超晶格类型的材料生长、载流子迁移率、少子载流子寿命、发光特性以及退火对材料和器件的影响;研究施加偏压对不同垒层厚度且掺杂后GaNAs/InGaAs超晶格光学和量子效率的影响;研究超晶格电池聚光性能变化以及加热时温度的影响规律并加以比较,深析电池聚光工作时温度的影响问题。

中文关键词: Ge衬底;1 eV吸收带边;GaNAs/InGaAs超晶格;等离子体增强分子束外延;太阳能电池

英文摘要: GaInNAs subcell with a roughly 1 eV band gap, which is lattice-matched to germanium substrate, could become a critical component in next-generation multijunction concentration solar cells for terrestrial applications. Fundenmantal issues limiting its practical applications are short minority diffusion length,low mobility and high series resistance which could be caused by nitrogen-related deep-level defects (poor solubility of nitrogen in InGaAs) and/or strain and composition fluctuations associated with In and N concomitance during the epitaxy growth of III-V-N dilute nitride materials. These issues finally result in low short-circuit current density that is one of key factors to design multijunction solar cells. To alleviate some of these problems, we propose a new cell structure on germanium substrate using supperlattice as a photon absorber which is a combination of two differenct GaNAs/InGaAs superlattice structures with thin and thick barrier layers, and one of superlattice structures is doped. The thick GaNAs/InGaAs superlattice necessites to have a cut-off bandedge of 1 eV based on the photoluminescence and quantum efficiency measurement. The meticulously designed structure could be benefical to reasonably-high open-circuit voltage, short-circuit current density and fill factor, as well as low series res

英文关键词: Germanium substrates;1 eV absorption band-edge;GaNAs/InGaAs superlattices;plasma-enhanced molecular beam epitaxy;solar cells

成为VIP会员查看完整内容
0

相关内容

专知会员服务
31+阅读 · 2021年5月7日
最新《生成式对抗网络GAN时空数据应用》综述论文,28pdf
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
26+阅读 · 2020年4月6日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
19+阅读 · 2021年6月15日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员