A recurring problem in game semantics is to enforce uniformity in strategies. Informally, a strategy is uniform when the Player's behaviour does not depend on the particular indexing of moves chosen by the Opponent. In game semantics, uniformity is used to define a resource modality !, that can be exploited for the semantics of programming languages. In this paper we give a new account of uniformity for strategies on event structures. This work is inspired by an older idea due to Melli\`es, that uniformity should be expressed as "bi-invariance" with respect to two interacting group actions. We explore the algebraic foundations of bi-invariance, adapt this idea to the language of event structures and define a general notion of uniform strategy in this context. Finally we revisit an existing approach to uniformity, and show how this arises as a special case of our constructions.
翻译:在游戏语义学中,一个反复出现的问题是执行战略的统一性。 非正式地说, 当玩家的行为不取决于对手所选择的动作的特定索引化时, 策略是统一的。 在游戏语义学中, 使用统一性来定义一种资源模式 。 它可以用于编程语言的语义学 。 在本文中, 我们给出了事件结构战略的统一性的新描述 。 这项工作受到一个古老的理念的启发, 即统一性应该表现为两种互动团体行动的“ 双变量 ” 。 我们探索双变量的代数基础, 将这一理念调整到事件结构的语言上, 并在此背景下定义一个统一战略的一般概念 。 最后, 我们重新审视了一种关于事件结构的统一性的现有方法, 并展示这如何作为我们构建的特例出现 。