Prompt-tuning has received attention as an efficient tuning method in the language domain, i.e., tuning a prompt that is a few tokens long, while keeping the large language model frozen, yet achieving comparable performance with conventional fine-tuning. Considering the emerging privacy concerns with language models, we initiate the study of privacy leakage in the setting of prompt-tuning. We first describe a real-world email service pipeline to provide customized output for various users via prompt-tuning. Then we propose a novel privacy attack framework to infer users' private information by exploiting the prompt module with user-specific signals. We conduct a comprehensive privacy evaluation on the target pipeline to demonstrate the potential leakage from prompt-tuning. The results also demonstrate the effectiveness of the proposed attack.


翻译:---- Prompt调整语言模型是否确保隐私? Prompt调整已经引起了在语言领域中的关注,即在保持大型语言模型冻结的情况下,调整一个仅几个词汇长度的prompt,同时实现与传统微调相当的性能。考虑到语言模型的隐私问题,本文在Prompt调整的环境下开始了隐私泄漏的研究。我们首先介绍一个实际的电子邮件服务管道,通过Prompt调整为不同的用户提供定制化输出。然后,我们提出了一个新颖的隐私攻击框架,利用特定用户信号来利用Prompt模块推断用户的私人信息。我们对目标管道进行了全面的隐私评估,以证明Prompt调整的潜在泄漏。结果还证明了所提出攻击的有效性。

0
下载
关闭预览

相关内容

最新《Transformers》报告,Google Lucas Beyer 报告
专知会员服务
67+阅读 · 2022年9月13日
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
30+阅读 · 2022年3月12日
预训练语言模型fine-tuning近期进展概述
专知会员服务
38+阅读 · 2021年4月9日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
12+阅读 · 2018年6月25日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
12+阅读 · 2018年6月25日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员