Prompt-tuning has received attention as an efficient tuning method in the language domain, i.e., tuning a prompt that is a few tokens long, while keeping the large language model frozen, yet achieving comparable performance with conventional fine-tuning. Considering the emerging privacy concerns with language models, we initiate the study of privacy leakage in the setting of prompt-tuning. We first describe a real-world email service pipeline to provide customized output for various users via prompt-tuning. Then we propose a novel privacy attack framework to infer users' private information by exploiting the prompt module with user-specific signals. We conduct a comprehensive privacy evaluation on the target pipeline to demonstrate the potential leakage from prompt-tuning. The results also demonstrate the effectiveness of the proposed attack.
翻译:----
Prompt调整语言模型是否确保隐私?
Prompt调整已经引起了在语言领域中的关注,即在保持大型语言模型冻结的情况下,调整一个仅几个词汇长度的prompt,同时实现与传统微调相当的性能。考虑到语言模型的隐私问题,本文在Prompt调整的环境下开始了隐私泄漏的研究。我们首先介绍一个实际的电子邮件服务管道,通过Prompt调整为不同的用户提供定制化输出。然后,我们提出了一个新颖的隐私攻击框架,利用特定用户信号来利用Prompt模块推断用户的私人信息。我们对目标管道进行了全面的隐私评估,以证明Prompt调整的潜在泄漏。结果还证明了所提出攻击的有效性。