Vision Prompt Tuning

Xing Nie, Gaofeng Meng, Jianlong Chang, Chunlei Huo, Shiming Xiang, Qi Tian, Zhaoxiang Zhang, Chunhong Pan

在计算机视觉中,微调是一种实用的利用预先训练的视觉模型来执行下游任务的方法。然而,由于这类方法多采用低效的全局参数更新策略,以及严重依赖于高质量的下游数据,在实践中部署非常具有挑战性。最近,基于prompt learning的方法增加了与任务相关的提示以使下游任务适应预训练模型,极大地提高了许多自然语言下游任务的性能。在这项工作中,我们将这种显着的迁移能力扩展到视觉模型中,作为微调的替代方案。为此,我们提出了视觉提示调整(VPT),这是一种参数有效的视觉调整范式,可将冻结的视觉模型适应到下游数据。VPT 的关键是基于提示的调优,即只学习与输入图像连接的特定任务视觉提示,并冻结预训练模型。通过这种方式,VPT 只需训练少量额外参数即可生成紧凑且稳健的下游模型。大量实验有力地证明,我们的方法在十五个下游视觉数据集上优于当前的调整范例,包括图像损坏、对抗性示例、长尾分布和OOD问题等。

VPT结构示意图

成为VIP会员查看完整内容
31

相关内容

CVPR 2022 将于2022年 6 月 21-24 日在美国的新奥尔良举行。CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议,会议的主要内容是计算机视觉与模式识别技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【CVPR2022】高分辨率和多样化的视频-文本预训练模型
专知会员服务
9+阅读 · 2022年3月6日
专知会员服务
15+阅读 · 2021年10月4日
专知会员服务
37+阅读 · 2021年3月31日
【NeurIPS 2020】视觉和语言表示学习的大规模对抗性训练
专知会员服务
14+阅读 · 2020年10月27日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
视觉Prompt来了,效果超越微调!
夕小瑶的卖萌屋
2+阅读 · 2022年3月26日
Child-Tuning:简单有效的微调涨点方法
夕小瑶的卖萌屋
1+阅读 · 2021年11月5日
多模态中的Prompt范式:从CLIP、CoOp到CLIP-adapter
PaperWeekly
5+阅读 · 2021年11月3日
论文浅尝 | 利用冻结语言模型的多模态少样本学习
开放知识图谱
0+阅读 · 2021年8月28日
CVPR 2020 论文大盘点-图像增强与图像恢复篇
计算机视觉life
36+阅读 · 2020年7月10日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Simple and Effective Unsupervised Speech Synthesis
Arxiv
2+阅读 · 2022年4月20日
Arxiv
58+阅读 · 2021年11月15日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员