Dynamic mode decomposition (DMD) is an emerging methodology that has recently attracted computational scientists working on nonintrusive reduced order modeling. One of the major strengths that DMD possesses is having ground theoretical roots from the Koopman approximation theory. Indeed, DMD may be viewed as the data-driven realization of the famous Koopman operator. Nonetheless, the stable implementation of DMD incurs computing the singular value decomposition of the input data matrix. This, in turn, makes the process computationally demanding for high dimensional systems. In order to alleviate this burden, we develop a framework based on sketching methods, wherein a sketch of a matrix is simply another matrix which is significantly smaller, but still sufficiently approximates the original system. Such sketching or embedding is performed by applying random transformations, with certain properties, on the input matrix to yield a compressed version of the initial system. Hence, many of the expensive computations can be carried out on the smaller matrix, thereby accelerating the solution of the original problem. We conduct numerical experiments conducted using the spherical shallow water equations as a prototypical model in the context of geophysical flows. The performance of several sketching approaches is evaluated for capturing the range and co-range of the data matrix. The proposed sketching-based framework can accelerate various portions of the DMD algorithm, compared to classical methods that operate directly on the raw input data. This eventually leads to substantial computational gains that are vital for digital twinning of high dimensional systems.


翻译:动态模式分解( DMD) 是一个新兴的方法,最近吸引了从事非侵入性减少秩序模型的计算学家。 DMD拥有的主要优势之一是从Koopman近似理论中产生基础理论根基。 事实上, DMD可以被视为著名的Koopman 操作者的数据驱动实现。 然而, DMD的稳定实施可以计算输入数据矩阵的单值分解。这反过来又使得高维系统在计算过程中需要高维系统。为了减轻这一负担,我们开发了一个基于素描方法的框架,其中矩阵的草图只是另一个非常小但仍然足够接近原始系统的矩阵。这种草图或嵌入是通过随机转换(具有某些特性的)投入矩阵实现的。因此,许多昂贵的计算可以在较小的矩阵上进行,从而加速解决原始问题。为了减轻这一负担,我们用球质浅水方程式进行数字实验,作为基础的原始模型在地球物理结构流动中进行,但仍然足够接近原始系统。这些矩阵的素描图或嵌嵌化,通过随机转换模型进行,从而将各种关键数据递增数据模型进行。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
Model Reduction via Dynamic Mode Decomposition
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员