Intelligent medical diagnosis has shown remarkable progress based on the large-scale datasets with precise annotations. However, fewer labeled images are available due to significantly expensive cost for annotating data by experts. To fully exploit the easily available unlabeled data, we propose a novel Spatio-Temporal Structure Consistent (STSC) learning framework. Specifically, a gram matrix is derived to combine the spatial structure consistency and temporal structure consistency together. This gram matrix captures the structural similarity among the representations of different training samples. At the spatial level, our framework explicitly enforces the consistency of structural similarity among different samples under perturbations. At the temporal level, we consider the consistency of the structural similarity in different training iterations by digging out the stable sub-structures in a relation graph. Experiments on two medical image datasets (i.e., ISIC 2018 challenge and ChestX-ray14) show that our method outperforms state-of-the-art SSL methods. Furthermore, extensive qualitative analysis on the Gram matrices and heatmaps by Grad-CAM are presented to validate the effectiveness of our method.


翻译:智能医学诊断显示,根据具有准确说明说明的大规模数据集,取得了显著进展;然而,由于专家说明数据的费用昂贵,贴有标签的图像较少;为了充分利用容易获得的无标签数据,我们提议了一个全新的Spatio-Teoporal 结构一致性(STSC)学习框架;具体地说,为了将空间结构的一致性和时间结构的一致性结合起来,将得出一个语法矩阵。这个语法矩阵反映了不同培训样本在结构上的相似性。在空间层面,我们的框架明确强制执行在扰动下不同样本的结构相似性的一致性。在时间层面,我们考虑通过在关系图中挖掘稳定的亚结构来在不同培训中的结构相似性。关于两个医学图像数据集(即ISIC 2018挑战与ChestX-ray14)的实验表明,我们的方法超越了科学科学模型方法的状态。此外,我们还提出了关于格拉德-CAM的格模矩阵和热谱图的广泛的定性分析,以验证我们的方法的有效性。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员