The domains of transport and logistics are increasingly relying on autonomous mobile robots for the handling and distribution of passengers or resources. At large system scales, finding decentralized path planning and coordination solutions is key to efficient system performance. Recently, Graph Neural Networks (GNNs) have become popular due to their ability to learn communication policies in decentralized multi-agent systems. Yet, vanilla GNNs rely on simplistic message aggregation mechanisms that prevent agents from prioritizing important information. To tackle this challenge, in this paper, we extend our previous work that utilizes GNNs in multi-agent path planning by incorporating a novel mechanism to allow for message-dependent attention. Our Message-Aware Graph Attention neTwork (MAGAT) is based on a key-query-like mechanism that determines the relative importance of features in the messages received from various neighboring robots. We show that MAGAT is able to achieve a performance close to that of a coupled centralized expert algorithm. Further, ablation studies and comparisons to several benchmark models show that our attention mechanism is very effective across different robot densities and performs stably in different constraints in communication bandwidth. Experiments demonstrate that our model is able to generalize well in previously unseen problem instances, and it achieves a 47% improvement over the benchmark success rate, even in very large-scale instances that are 100x larger than the training instances.


翻译:交通运输和物流领域日益依赖自主移动机器人来处理和分配乘客或资源。在大系统规模上,找到分散路径的规划和协调解决方案是系统高效运行的关键。最近,图像神经网络(GNNNS)因其在分散多试剂系统中学习通信政策的能力而变得受欢迎。然而,香草GNNS依靠简单的信息汇总机制,防止代理商对重要信息进行优先排序。为了应对这一挑战,我们在本文件中扩展了以前在多试剂路径规划中利用GNNS使用GNs的工作,纳入了允许关注信息依赖的新机制。我们的信息-Aware图形注意 NETwork(MAGAT)基于一个关键类机制,它决定了从各相邻机器人收到的信息的相对重要性。我们表明,MAGAT能够接近于一个同时集中的专家算法的功能。此外,与一些基准模型的对比研究显示,我们的关注机制在不同机器人密度上非常有效,在通信带宽的带宽的带宽的带宽的制约下进行精确的操作。实验表明,我们的模型比以往的大型标准要高出47个标准。

0
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Top
微信扫码咨询专知VIP会员