Querying graph structured data is a fundamental operation that enables important applications including knowledge graph search, social network analysis, and cyber-network security. However, the growing size of real-world data graphs poses severe challenges for graph databases to meet the response-time requirements of the applications. Planning the computational steps of query processing - Query Planning - is central to address these challenges. In this paper, we study the problem of learning to speedup query planning in graph databases towards the goal of improving the computational-efficiency of query processing via training queries.We present a Learning to Plan (L2P) framework that is applicable to a large class of query reasoners that follow the Threshold Algorithm (TA) approach. First, we define a generic search space over candidate query plans, and identify target search trajectories (query plans) corresponding to the training queries by performing an expensive search. Subsequently, we learn greedy search control knowledge to imitate the search behavior of the target query plans. We provide a concrete instantiation of our L2P framework for STAR, a state-of-the-art graph query reasoner. Our experiments on benchmark knowledge graphs including DBpedia, YAGO, and Freebase show that using the query plans generated by the learned search control knowledge, we can significantly improve the speed of STAR with negligible loss in accuracy.
翻译:查询图表结构数据是一项基本操作,它使得包括知识图表搜索、社会网络分析和网络网络安全在内的重要应用得以应用。然而,现实世界数据图表的日益扩大给图形数据库满足应用程序的反应时间要求带来了严重挑战。规划查询处理的计算步骤-查询规划是应对这些挑战的核心。在本文件中,我们研究在图形数据库中学习如何加快查询规划的问题,以便通过培训查询提高查询处理的计算效率。我们介绍了一个适用于一大批查询师的L2P(L2P)框架,这些查询师都遵循了TA(TA)方法。首先,我们为候选人查询计划确定了通用搜索空间,并确定了与培训查询相对的目标搜索轨迹(查询计划),为此进行了昂贵的搜索。随后,我们学习了贪婪的搜索控制知识,以模仿目标查询计划的搜索行为。我们为STAR提供了一个具体的L2P(L2P)框架,这是在采用STAR(TA)方法的州级图表查询员中应用。首先,我们界定了候选人查询计划的通用搜索空间,确定了与培训查询计划相关的搜索路径。我们通过STRA进行的基本搜索速度测试,从而大大改进了我们所学的搜索数据库的搜索速度。