Existing few-shot learning (FSL) methods usually assume base classes and novel classes are from the same domain (in-domain setting). However, in practice, it may be infeasible to collect sufficient training samples for some special domains to construct base classes. To solve this problem, cross-domain FSL (CDFSL) is proposed very recently to transfer knowledge from general-domain base classes to special-domain novel classes. Existing CDFSL works mostly focus on transferring between near domains, while rarely consider transferring between distant domains, which is in practical need as any novel classes could appear in real-world applications, and is even more challenging. In this paper, we study a challenging subset of CDFSL where the novel classes are in distant domains from base classes, by revisiting the mid-level features, which are more transferable yet under-explored in main stream FSL work. To boost the discriminability of mid-level features, we propose a residual-prediction task to encourage mid-level features to learn discriminative information of each sample. Notably, such mechanism also benefits the in-domain FSL and CDFSL in near domains. Therefore, we provide two types of features for both cross- and in-domain FSL respectively, under the same training framework. Experiments under both settings on six public datasets, including two challenging medical datasets, validate the our rationale and demonstrate state-of-the-art performance. Code will be released.


翻译:现有的微小学习方法通常假定基础班,而新的班级通常来自同一个领域(内部环境),但在实践中,收集足够一些特殊领域的培训样本以建造基础班可能不可行。为了解决这个问题,最近建议交叉域FSL(CDFSL)将知识从普通类基本班转移到特殊类新班。现有的CDFSL(CDSL)主要侧重于在近域之间转移,而很少考虑在远域之间转移,因为任何新班都可以在现实世界的应用中出现,而且更具挑战性。在本文中,我们研究一个具有挑战性的CDFSL组组组,新班位于远离基础班的远域,通过重新研究中等级的功能,这些功能在FSL主流工作中比较可转让,但探索不到。为了提高中等级特征的可调和性,我们提议一项剩余定位任务,鼓励中层特征学习每个样本的歧视性信息。值得注意的是,这种机制还有利于FSFSL和CDFSL(CFSL)在近域内的两个主机域的医学和CFSDFS(包括两个基础)的跨域内,我们将在两个基础框架下分别展示两种数据。

1
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
专知会员服务
114+阅读 · 2020年10月8日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
31+阅读 · 2020年3月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
5+阅读 · 2020年3月17日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员