Contemporary domain adaptive semantic segmentation aims to address data annotation challenges by assuming that target domains are completely unannotated. However, annotating a few target samples is usually very manageable and worthwhile especially if it improves the adaptation performance substantially. This paper presents SSDAS, a Semi-Supervised Domain Adaptive image Segmentation network that employs a few labeled target samples as anchors for adaptive and progressive feature alignment between labeled source samples and unlabeled target samples. We position the few labeled target samples as references that gauge the similarity between source and target features and guide adaptive inter-domain alignment for learning more similar source features. In addition, we replace the dissimilar source features by high-confidence target features continuously during the iterative training process, which achieves progressive intra-domain alignment between confident and unconfident target features. Extensive experiments show the proposed SSDAS greatly outperforms a number of baselines, i.e., UDA-based semantic segmentation and SSDA-based image classification. In addition, SSDAS is complementary and can be easily incorporated into UDA-based methods with consistent improvements in domain adaptive semantic segmentation.


翻译:当代领域适应性静语分解旨在通过假定目标领域完全没有附加说明来应对数据说明挑战。然而,说明几个目标样本通常非常易于管理,而且值得,特别是如果它能大大改进适应性性能的话。本文介绍了SSDAS,一个半超超多可调适性Domical 图像分解网络,它使用一些标签目标样本作为标签源样和未贴标签目标样本之间适应性和渐进性特征调整的锚点。我们把少数标签目标样本定位为衡量源和目标特征之间的相似性的参考,并指导适应性跨部间对齐,以学习更相似的来源特征。此外,在迭接式培训过程中,我们以高信任性目标特征取代不同来源特征,从而在自信和不兼容性目标特征之间实现渐进式内部对齐。广泛的实验显示,拟议的SDADAS大大超越了许多基线,即基于UDA的语义分解和基于SDA的图像分类。此外,SDAS是互补的,并且可以很容易地纳入基于UDA的图象分解方法。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
93+阅读 · 2021年7月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员