The capacity of commercial massive multiple-input multiple-output (mMIMO) systems is constrained by the limited array aperture at the base station, and cannot meet the ever-increasing traffic demands of wireless networks. Given the array aperture, holographic MIMO with infinitesimal antenna spacing can maximize the capacity, but is physically unrealizable. As a promising alternative, reconfigurable mMIMO is proposed to harness the unexploited power of the electromagnetic (EM) domain for enhanced information transfer. Specifically, the reconfigurable pixel antenna technology provides each antenna with an adjustable EM radiation (EMR) pattern, introducing extra degrees of freedom for information transfer in the EM domain. In this article, we present the concept and benefits of availing the EMR domain for mMIMO transmission. Moreover, we propose a viable architecture for reconfigurable mMIMO systems, and the associated system model and downlink precoding are also discussed. In particular, a three-level precoding scheme is proposed, and simulation results verify its considerable spectral and energy efficiency advantages compared to traditional mMIMO systems. Finally, we further discuss the challenges, insights, and prospects of deploying reconfigurable mMIMO, along with the associated hardware, algorithms, and fundamental theory.


翻译:商业大规模多投入多输出系统的能力受到基站有限阵列孔径的限制,无法满足无线网络不断增长的交通需求。鉴于阵列孔径,具有极小天天间间间距的全息百万兆米,可以最大限度地扩大容量,但实际上无法实现。作为一个有希望的替代办法,建议重新配置兆米米姆,以利用电磁(EM)域的未开发能力加强信息传输。具体地说,重组像素天线技术为每个天线提供了可调整的EM辐射模式(EMMR),在EM域引入了额外的信息传输自由度。在文章中,我们介绍了利用EMMR域进行MIMO传输的概念和好处。此外,我们提出了一个可行的结构,用于可重新配置的MSIMO系统,并讨论了相关的系统模型和下链接预编码。特别是,提出了一个三级的预编码计划,并模拟结果证实与传统的MIMO系统相比,它具有相当大的光谱和能源效率优势。最后,我们进一步讨论了利用EM域域域域域域域域域域域域域域域图、可理解和模型的基本前景。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员