项目名称: 超声振动辅助微细铣削加工技术及机理研究
项目编号: No.50875157
项目类型: 面上项目
立项/批准年度: 2009
项目学科: 金属学与金属工艺
项目作者: 张建华
作者单位: 山东大学
项目金额: 33万元
中文摘要: 系统研究超声振动辅助微细铣削加工的运动学和动力学特性,建立了超声振动辅助铣削加工的瞬时切削厚度计算模型,分析不同振动方式下的切削力特点,获得了最佳单向振动模式,实现超声振动与铣削加工的最佳匹配。实验研究沿进给方向超声振动对铣削过程中各方向铣削分力峰值的影响规律,应用RSM方法和ANOVA方法对最大铣削力进行数学统计建模和分析。建立了简化的超声振动辅助微细铣削二维有限元模型,对超声振动辅助微细铣削温度场进行有限元仿真分析,得到普通铣削和超声振动辅助铣削变形区的动态温度分布,并对仿真结果进行实验验证。建立刀具-工件振动系统模型,分析并计算普通铣削和超声振动辅助铣削过程中工件在垂直进给方向上的动态位移,实验研究施加超声振动前后加工尺寸精度的变化,获得不同超声振动参数和铣削加工参数匹配对加工尺寸精度的影响规律。研究并分析超声振动对立铣刀底刃和侧刃形成表面的表面粗糙度影响规律,研究了在乏油润滑条件下,由铣刀底刃形成表面及其微织构的摩擦学特性,获得了不同超声振动和铣削加工参数匹配条件下加工表面的摩擦系数、磨损率以及最大承载压力变化规律,并对超声振动辅助铣削加工表面的流体润滑特性进行仿真研究。
中文关键词: 超声振动;铣削;运动特性;表面粗糙度;摩擦磨损
英文摘要: Study the kinematics and dynamics of ultrasonic vibration assisted milling (UVAM). A chip thickness mathematic model of UVAM was proposed. The characteristics of milling force under two different ultrasonic vibration modes were discussed and obtained the optimal vibration mode to achieve the best match of ultrasonic vibration with milling.Slot milling experiments were carried out to prove the theoretical analysis conclusions.The affect of ultrasonic vibration on the peak values of component forces in feed/normal directions were experimentally investigated. A statistical model of the maximum resultant force was proposed by using RSM and ANOVA.A simplified two-dimensional Finite Element Model of UVAM was established to analyze its temperature field. The dynamic distribution of temperature at the deformation zone in UVAM was obtained. Simulation results were verified by experimental data.A cutting tool-workpiece vibration system model was built, and the dynamic displacements of workpiece along normal direction in common milling and UVAM were calculated respectively.The effects of ultrasonic vibration matching with milling parameters on machining accuracy were investigated.The influence of ultrasonic vibration on surface roughnesses by bottom blade and side blade of an end mill were investigated. The tribological performance of ultrasonic vibration assisted milling surfaces was tested in the case of poor oil lubrication. The friction coefficient, wear rate and carrying capacity of different surfaces machined with different matching parameters were studied.
英文关键词: Ultrasonic vibration;milling;kinematic characteristics; surface roughness; friction and wear