We study the fundamental limits of classical communication using quantum states that decohere as they traverse through a network of queues. We consider a network of Markovian queues, known as a Jackson network, with a single source or multiple sources and a single destination. Qubits are communicated through this network with inevitable buffering at intermediate nodes. We model each node as a `queue-channel,' wherein as the qubits wait in buffer, they continue to interact with the environment and suffer a waiting time-dependent noise. Focusing on erasures, we first obtain explicit classical capacity expressions for simple topologies such as tandem queue-channel and parallel queue-channel. Using these as building blocks, we characterize the classical capacity of a general quantum Jackson network with waiting time-dependent erasures. Throughout, we study two types of quantum networks, namely, (i) Repeater-assisted and (ii) Repeater-less. We also obtain optimal pumping rates and routing probabilities to maximize capacity in simple topologies. More broadly, our work quantifies the impact of delay-induced decoherence on the fundamental limits of classical communication over quantum networks.
翻译:我们用量子研究古典通信的基本界限, 表明它们通过一个队列网络穿行时会分解, 分解它们。 我们考虑一个被称为杰克逊网络的马尔科维亚队列网络, 称为杰克逊网络, 只有一个源或多个源和单一目的地。 Qubits 通过这个网络传递, 在中间节点上不可避免缓冲。 我们把每个节点建为“ queue- 通道 ”, 在缓冲中等待的qubits 继续与环境互动, 并遭受一个等待时间的噪音。 以擦除为焦点, 我们首先获得一个简单的表层, 我们首先获得一个简单的表层( ), 我们用这些构件来描述普通量子杰克逊网络的典型能力, 等待时间间隔。 我们从总体上研究两种量子网络, 即 (i) 重复辅助 和 (ii) 重复性。 我们还获得了最佳的泵速率, 和在简单表层中实现能力最大化的路径性。 更广义地说, 我们的工作对延迟导致的古典度通信网络对基本限度的影响进行了区分。