Developing new ways to estimate probabilities can be valuable for science, statistics, and engineering. By considering the information content of different output patterns, recent work invoking algorithmic information theory has shown that a priori probability predictions based on pattern complexities can be made in a broad class of input-output maps. These algorithmic probability predictions do not depend on a detailed knowledge of how output patterns were produced, or historical statistical data. Although quantitatively fairly accurate, a main weakness of these predictions is that they are given as an upper bound on the probability of a pattern, but many low complexity, low probability patterns occur, for which the upper bound has little predictive value. Here we study this low complexity, low probability phenomenon by looking at example maps, namely a finite state transducer, natural time series data, RNA molecule structures, and polynomial curves. Some mechanisms causing low complexity, low probability behaviour are identified, and we argue this behaviour should be assumed as a default in the real world algorithmic probability studies. Additionally, we examine some applications of algorithmic probability and discuss some implications of low complexity, low probability patterns for several research areas including simplicity in physics and biology, a priori probability predictions, Solomonoff induction and Occam's razor, machine learning, and password guessing.


翻译:开发预测概率的新方法对于科学、统计和工程来说可能很有价值。 通过考虑不同产出模式的信息内容,最近援引算法信息理论的工作表明,基于模式复杂性的先验概率预测可以在广泛的投入-产出地图类别中做出。这些算法概率预测并不取决于如何产生产出模式的详细知识,也不取决于历史统计数据。虽然在数量上相当准确,但这些预测的一个主要弱点是,它们被作为模式概率的上限,但许多低复杂性、低概率模式的出现,而高约束值对后者几乎没有预测价值。在这里,我们研究这种低复杂性、低概率现象,方法是通过查看一些地图,即有限的状态转换器、自然时间序列数据、RNA分子结构以及多数值曲线。一些造成低复杂性、低概率行为的机制被确定为真实世界算法概率研究中的默认。此外,我们研究了算法概率的一些应用,并讨论了低复杂性、低概率模式对若干研究领域的影响,包括精密的物理和先期核感、先期物理学和核感学的精确度、先期物理学和核感学的概率。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员