A generalized set theory (GST) is like a standard set theory but also can have non-set structured objects that can contain other structured objects including sets. This paper presents Isabelle/HOL support for GSTs, which are treated as type classes that combine features that specify kinds of mathematical objects, e.g., sets, ordinal numbers, functions, etc. GSTs can have an exception feature that eases representing partial functions and undefinedness. When assembling a GST, extra axioms are generated following a user-modifiable policy to fill specification gaps. Specialized type-like predicates called soft types are used extensively. Although a GST can be used without a model, for confidence in its consistency we build a model for each GST from components that specify each feature's contribution to each tier of a von-Neumann-style cumulative hierarchy defined via ordinal recursion, and we then connect the model to a separate type which the GST occupies.
翻译:通用设定理论( GST) 类似于标准设定理论, 但也可以有非设定的结构化对象, 包含其他结构化对象, 包括集。 本文件展示了伊莎贝尔/ HOL 支持 GST, 这些支持被视作类型类别, 包括指定数学对象种类的特性, 如集体、 交点号、 函数等。 GST 可以有一个例外特征, 方便代表部分功能和未定义性。 当组装 GST 时, 额外轴由用户调整政策生成, 以填补规格空白 。 广泛使用特殊类型类的“ 软型” 。 虽然可以不用模型使用 GST 。 为了对一致性的信心, 我们为每个 GST 构建了一个模型, 由组件来指定每个特性对 von- Neumann 式累积等级的每一级别的贡献, 以 以 ordinal usion 定义, 然后我们将模型与 GST 所占用的单独类型连接 。