We present a faster interior-point method for optimizing sum-of-squares (SOS) polynomials, which are a central tool in polynomial optimization and capture convex programming in the Lasserre hierarchy. Let $p = \sum_i q^2_i$ be an $n$-variate SOS polynomial of degree $2d$. Denoting by $L := \binom{n+d}{d}$ and $U := \binom{n+2d}{2d}$ the dimensions of the vector spaces in which $q_i$'s and $p$ live respectively, our algorithm runs in time $\tilde{O}(LU^{1.87})$. This is polynomially faster than state-of-art SOS and semidefinite programming solvers, which achieve runtime $\tilde{O}(L^{0.5}\min\{U^{2.37}, L^{4.24}\})$. The centerpiece of our algorithm is a dynamic data structure for maintaining the inverse of the Hessian of the SOS barrier function under the polynomial interpolant basis, which efficiently extends to multivariate SOS optimization, and requires maintaining spectral approximations to low-rank perturbations of elementwise (Hadamard) products. This is the main challenge and departure from recent IPM breakthroughs using inverse-maintenance, where low-rank updates to the slack matrix readily imply the same for the Hessian matrix.
翻译:我们提出了一个最快速的内点方法来优化平方( SOS) 多边正弦值( SOS) 和 $U: =\ binom{n+2d ⁇ 2d} 。 这是在拉塞尔等级中, 多元优化和捕捉 convex 编程的核心工具。 $p =\ sum_ i q ⁇ 2_ i_ $_ 美元是 美元差异性求求求求求多维度 2d$ 。 由 $L: =\ binom{n+d ⁇ d} 美元 和 $U: =\ binom{n+2d ⁇ 2d} 表示优化 多边正弦值( $_ i+2d ⁇ 2d} 美元。 我们的算法中心空间的向量性向量性空间空间空间的尺寸分别为 $q_ i 和 $p$, 我们的算法在时间 $\ =trede{O} (LU 1.87} 美元中运行。 这比数性速度性速度快快快, 至 以维持 摩度值 的双向 。