The challenge of simulating random variables is a central problem in Statistics and Machine Learning. Given a tractable proposal distribution $P$, from which we can draw exact samples, and a target distribution $Q$ which is absolutely continuous with respect to $P$, the A* sampling algorithm allows simulating exact samples from $Q$, provided we can evaluate the Radon-Nikodym derivative of $Q$ with respect to $P$. Maddison et al. originally showed that for a target distribution $Q$ and proposal distribution $P$, the runtime of A* sampling is upper bounded by $\mathcal{O}(\exp(D_{\infty}[Q||P]))$ where $D_{\infty}[Q||P]$ is the Renyi divergence from $Q$ to $P$. This runtime can be prohibitively large for many cases of practical interest. Here, we show that with additional restrictive assumptions on $Q$ and $P$, we can achieve much faster runtimes. Specifically, we show that if $Q$ and $P$ are distributions on $\mathbb{R}$ and their Radon-Nikodym derivative is unimodal, the runtime of A* sampling is $\mathcal{O}(D_{\infty}[Q||P])$, which is exponentially faster than A* sampling without assumptions.
翻译:模拟随机变量的挑战在统计和机器学习中是一个中心问题。 模拟随机变量的挑战在统计和机器学习中是一个中心问题。 鉴于我们可以从中提取精确样本的可移植建议分配美元和绝对连续的美元目标分配额,A* 抽样算法允许从美元中模拟精确的样品。 只要我们可以对Radon-Nikodym衍生物(Q$)相对于美元进行估价。 Maddison et al. 最初显示,对于一个目标分配和提议分配额(P$)而言,A* 抽样的运行时间上限为$\mathcal{O}(Explex) (D){infty}[Q}[P]) 美元,而美元是Renyi 美元与美元(QQ) 美元之间的差额。这一运行时间对于许多实际感兴趣的案例来说可能非常之大。 在这里,如果对美元和美元的额外限制性假设,我们就能更快的运行时间。 具体地说,我们表明,如果美元和美元是美元(P$和美元是美元)在美元(M* 的取样是快速。