Simulated Moving Bed (SMB) chromatography is a well-known technique for the resolution of several high-value-added compounds. Parameters identification and model topology definition are arduous when one is dealing with complex systems such as a Simulated Moving Bed unit. Moreover, the large number of experiments necessary might be an expansive-long process. Hence, this work proposes a novel methodology for parameter estimation, screening the most suitable topology of the models sink-source (defined by the adsorption isotherm equation) and defining the minimum number of experiments necessary to identify the model. Therefore, a nested loop optimization problem is proposed with three levels considering the three main goals of the work: parameters estimation; topology screening by isotherm definition; minimum number of experiments necessary to yield a precise model. The proposed methodology emulated a real scenario by introducing noise in the data and using a Software-in-the-Loop (SIL) approach. Data reconciliation and uncertainty evaluation add robustness to the parameter estimation adding precision and reliability to the model. The methodology is validated considering experimental data from literature apart from the samples applied for parameter estimation, following a cross-validation. The results corroborate that it is possible to carry out trustworthy parameter estimation directly from an SMB unit with minimal system knowledge.
翻译:参数识别和模型表层定义十分艰巨。此外,大量必要的实验可能是一个广泛的过程。因此,这项工作提出了一种新颖的方法,用于参数估计,筛选模型汇源的最合适的地形(由吸附方程式定义),并确定确定模型所需的最低试验次数。因此,提议了一个嵌套环极优化问题,在三个层次上考虑到工作的三个主要目标:参数估计;由温度定义进行表层筛选;产生精确模型所需的最低试验次数。拟议方法在数据中引入噪音,并使用软件-软件-Loop(SIL)方法,从而模拟真实情景。数据调和不确定性评估为参数估算增添了稳健性,增加了模型的精确性和可靠性。该方法经过验证,考虑到参数估算所应用的样本以外的实验性数据,从参数估算的样本到可直接估算的SIMB,并辅之以最低限度的系统。验证的结果是,从一个可直接估算的系统到一个可验证的系统。