A common way to approximate $F(A)b$ -- the action of a matrix function on a vector -- is to use the Arnoldi approximation. Since a new vector needs to be generated and stored in every iteration, one is often forced to rely on restart algorithms which are either not efficient, not stable or only applicable to restricted classes of functions. We present a new representation of the error of the Arnoldi iterates if the function $F$ is given as a Laplace transform. Based on this representation we build an efficient and stable restart algorithm. In doing so we extend earlier work for the class of Stieltjes functions which are special Laplace transforms. We report several numerical experiments including comparisons with the restart method for Stieltjes functions.
翻译:约合 $F(A)b$ 的常见方法 -- -- 矢量矩阵函数的动作 -- -- 是使用Arnoldi 近似法。由于新矢量需要生成并存储在每个迭代中,人们往往不得不依赖不是效率不高、不稳定或仅适用于有限功能类别的重新启动算法。如果函数用Laplace变换方式给出,我们用新的表示Arnoldi 的误差。基于此表示法,我们建立了高效和稳定的重新启动算法。我们这样做是为了延长先前Stieltjes 函数类别的工作,这些函数是特殊的Laplace变换方式。我们报告了若干数字实验,包括与Stieltjes 函数的重新启用方法进行比较。