In this work, we propose a novel framework for the numerical solution of time-dependent conservation laws with implicit schemes via primal-dual hybrid gradient methods. We solve an initial value problem (IVP) for the partial differential equation (PDE) by casting it as a saddle point of a min-max problem and using iterative optimization methods to find the saddle point. Our approach is flexible with the choice of both time and spatial discretization schemes. It benefits from the implicit structure and gains large regions of stability, and overcomes the restriction on the mesh size in time by explicit schemes from Courant--Friedrichs--Lewy (CFL) conditions (really via von Neumann stability analysis). Nevertheless, it is highly parallelizable and easy-to-implement. In particular, no nonlinear inversions are required! Specifically, we illustrate our approach using the finite difference scheme and discontinuous Galerkin method for the spatial scheme; backward Euler and backward differentiation formulas for implicit discretization in time. Numerical experiments illustrate the effectiveness and robustness of the approach. In future work, we will demonstrate that our idea of replacing an initial-value evolution equation with this primal-dual hybrid gradient approach has great advantages in many other situations.
翻译:在这项工作中,我们提出了一个新的框架,通过原始双混合梯度方法,用隐含计划,解决时间依赖的养护法的数字解决方案,通过原始双混合梯度方法,解决部分差异方程(PDE)的初始价值问题(IVP),方法是将它作为微轴问题的一个支撑点,并使用迭代优化方法寻找支撑点。我们的方法在时间和空间分化方法的选择上都是灵活的,既可以选择时间,也可以选择空间分解方法;从隐含结构中获益,获得大量稳定的区域,并通过Courant-Friedrichs-Lewy(CFL)条件的明确计划(通过Von Neumann稳定性分析)克服对网格大小的限制。然而,我们解决了部分差异方程的最初价值问题(IVP)的最初价值问题(IVP ) 。 特别是, 不需要非线性翻版的方法。 具体地说,我们用有限的差异计划和不连续的Galerkin方法来说明我们的方法; 后向后欧尔和后偏差公式来弥补隐含的分解。 。 数值实验说明了方法的有效性和稳健健健。在未来的工作中,我们将展示我们最初的渐变等式方法取代了许多混合等式的模型。