In this work, a fully adaptive finite element algorithm for symmetric second-order elliptic diffusion problems with inexact solver is developed. The discrete systems are treated by a local higher-order geometric multigrid method extending the approach of [Mira\c{c}i, Pape\v{z}, Vohral\'{i}k, SIAM J. Sci. Comput. (2021)]. We show that the iterative solver contracts the algebraic error robustly with respect to the polynomial degree $p \ge 1$ and the (local) mesh size $h$. We further prove that the built-in algebraic error estimator is $h$- and $p$-robustly equivalent to the algebraic error. The proofs rely on suitably chosen robust stable decompositions and a strengthened Cauchy-Schwarz inequality on bisection-generated meshes. Together, this yields that the proposed adaptive algorithm has optimal computational cost. Numerical experiments confirm the theoretical findings.
翻译:在这项工作中,开发了一种完全适应性的有限元素算法,用于对称二阶椭圆扩散问题,使用不尽然的溶解器。离散系统由地方高阶的几何多格格方法处理,扩大[Mira\c{c}i,Pape\v{z},Vohral\'{i}k,SIAM J.Sci.Comput.(2021)]。我们显示,迭代解法将多角度1美元/Ge1美元和(当地)网格1美元等值的代数错误牢固地结合为代数错误。我们进一步证明,内建的代数误差估计值等于[Mira\c{c{c{c}i,Pape\v{z},Vohralallal\'k, {i>。证据依赖适当选择的稳健固的分解位置和强化的Cauchy-Schwarz的不平等性,加固的双层生成的介质的代谢。加之,这就得出了拟议的适应算算算算算算成本最佳。