We consider a general nonsymmetric second-order linear elliptic PDE in the framework of the Lax-Milgram lemma. We formulate and analyze an adaptive finite element algorithm with arbitrary polynomial degree that steers the adaptive mesh-refinement and the inexact iterative solution of the arising linear systems. More precisely, the iterative solver employs, as an outer loop, the so-called Zarantonello iteration to symmetrize the system and, as an inner loop, a uniformly contractive algebraic solver, e.g., an optimally preconditioned conjugate gradient method or an optimal geometric multigrid algorithm. We prove that the proposed inexact adaptive iteratively symmetrized finite element method (AISFEM) leads to full linear convergence and, for sufficiently small adaptivity parameters, to optimal convergence rates with respect to the overall computational cost, i.e., the total computational time. Numerical experiments underline the theory.
翻译:我们考虑在Lax-Milgram Lemma框架内的普通非对称二等线性椭圆形 PDE。 我们制定并分析一个具有任意多元度的适应性有限元素算法,该算法引导着正在产生的线性系统的适应性网状精炼和不精细迭代溶液。 更确切地说,迭代求解器使用所谓的Zarantonello迭代法作为外环,对系统进行对称,并作为内环,使用一个统一的合同性代数解算器,例如,一种最理想的前提条件式同位梯度法或最佳的几何多格法。 我们证明,提议的不完全的适应性迭代相配化有限元素方法(ASFEM)导致完全的线性趋同,对于足够小的适应性参数,则在总计算成本(即计算总时间)方面达到最佳的趋同率。 数值实验强调了这一理论。