This paper describes three methods for carrying out non-asymptotic inference on partially identified parameters that are solutions to a class of optimization problems. Applications in which the optimization problems arise include estimation under shape restrictions, estimation of models of discrete games, and estimation based on grouped data. The partially identified parameters are characterized by restrictions that involve the unknown population means of observed random variables in addition to structural parameters. Inference consists of finding confidence intervals for functions of the structural parameters. Our theory provides finite-sample lower bounds on the coverage probabilities of the confidence intervals under three sets of assumptions of increasing strength. With the moderate sample sizes found in most economics applications, the bounds become tighter as the assumptions strengthen. We discuss estimation of population parameters that the bounds depend on and contrast our methods with alternative methods for obtaining confidence intervals for partially identified parameters. The results of Monte Carlo experiments and empirical examples illustrate the usefulness of our method.
翻译:本文介绍了就部分确定的参数进行非被动推断的三种方法,这些参数是解决某一类优化问题的办法; 产生优化问题的应用包括:根据形状限制估计,对离散游戏模型的估计,以及根据分组数据估计; 部分确定参数的特征是,除了结构参数外,还涉及观察到随机变量的未知人口手段; 推论包括为结构参数的功能寻找信任度间隔; 我们的理论根据三套不断增强的假设,对信任期的概率提供了有限样本的较低界限; 由于大多数经济应用中发现中等样本的大小,这些界限随着假设的加强而变得更加紧紧; 我们讨论了界限所依赖的人口参数估计,并将我们的方法与为部分确定的参数获得信任期的替代方法进行比较; Monte Carlo实验的结果和实验实例说明了我们方法的用处。