Meta-learning methods aim to build learning algorithms capable of quickly adapting to new tasks in low-data regime. One of the most difficult benchmarks of such algorithms is a one-shot learning problem. In this setting many algorithms face uncertainties associated with limited amount of training samples, which may result in overfitting. This problem can be resolved by providing additional information to the model. One of the most efficient ways to do this is multi-task learning. In this paper we investigate the modification of a standard meta-learning pipeline. The proposed method simultaneously utilizes information from several meta-training tasks in a common loss function. The impact of these tasks in the loss function is controlled by a per task weight. Proper optimization of the weights can have big influence on training and the final quality of the model. We propose and investigate the use of methods from the family of Simultaneous Perturbation Stochastic Approximation (SPSA) for optimization of meta-train tasks weights. We also demonstrate superiority of stochastic approximation in comparison to gradient-based method. The proposed Multi-Task Modification can be applied to almost all meta-learning methods. We study applications of this modification on Model-Agnostic Meta-Learning and Prototypical Network algorithms on CIFAR-FS, FC100, miniImageNet and tieredImageNet one-shot learning benchmarks. During these experiments Multi-Task Modification has demonstrated improvement over original methods. SPSA-Tracking algorithm first adapted in this paper for multi-task weight optimization shows the largest accuracy boost that is competitive to the state-of-the-art meta-learning methods. Our code is available online.
翻译:元学习方法旨在建立能够迅速适应低数据制度中新任务的学习算法。这类算法的最困难基准之一是一线学习问题。在这种环境下,许多算法面临与有限培训样本有关的不确定性,这可能导致过于适应。这个问题可以通过向模型提供更多信息加以解决。多任务学习是这样做的最有效方法之一。在本文件中,我们调查标准元学习管道的修改。拟议方法同时利用从一些元培训任务获得的信息,在一个共同损失函数中。这些任务在损失函数中的影响由每个任务重量来控制。适当优化加权可能对培训和模型的最终质量产生很大影响。我们建议和调查从模拟周期周期周期周期中采用的方法来优化元任务重量。我们还展示了与基于梯度的方法相比的原始随机近比。拟议的多任务对损失函数功能功能功能功能的调整作用由每个任务加权来控制。拟议的多任务计算法调整对几乎所有元数据网络的精度的精度影响可能会对培训以及模型的最终质量产生影响。我们建议并调查从模拟周期里程系统应用模型和模型里程里程里程里程里程方法。我们对这些模型的模型里程里程里程里程里程里程里程的SAL-SLALA-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-SAL-I-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-SL-I-I-SL-SL-I-I-SL-S-S-S-I-I-S-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-SDL-SDAR-SAR-SAR-SAR-SAR-SAR-I-I-I-I-I-I-I-I-SAR-SAR-SAR-I-SAR-I-I-I-S-S-S-SAR-I-S-S-S-