We begin by showing that any $n \times n$ matrix can be decomposed into a sum of $n$ circulant matrices with appropriate relaxations on the unit circle. This decomposition is orthogonal with respect to a Frobenius inner product, allowing recursive iterations for these circulant components. It is also shown that the dominance of a few circulant components in the matrix allows sparse similarity transformations using Fast-Fourier-transform (FFT) operations. This enables the evaluation of all eigenvalues of dense Toeplitz, block-Toeplitz, and other periodic or quasi-periodic matrices, to a reasonable approximation in $\mathcal{O}(n^2)$ arithmetic operations. The utility of the approximate similarity transformation in preconditioning linear solvers is also demonstrated.
翻译:我们首先表明,任何美元/乘以n美元矩阵都可以分解成一个总和,在单位圆上适当松动。这种分解对Frobenius内产物是正态的,允许循环循环循环使用这些螺旋元件。还表明,矩阵中一些螺旋元件的主导性允许使用快速四面形(FFT)操作进行稀疏的相似性变换。这样,就可以对密集的托普利茨、托普利茨区和其他定期或半周期基质的所有电子值进行评估,以合理的近似值($\mathcal{O}(n ⁇ 2)美元算术操作。还证明了在先决条件线性溶剂中近似性变换的效用。