Preconditioning has been a staple technique in optimization and machine learning. It often reduces the condition number of the matrix it is applied to, thereby speeding up convergence of optimization algorithms. Although there are many popular preconditioning techniques in practice, most lack theoretical guarantees for reductions in condition number. In this paper, we study the problem of optimal diagonal preconditioning to achieve maximal reduction in the condition number of any full-rank matrix by scaling its rows or columns separately or simultaneously. We first reformulate the problem as a quasi-convex problem and provide a baseline bisection algorithm that is easy to implement in practice, where each iteration consists of an SDP feasibility problem. Then we propose a polynomial time potential reduction algorithm with $O(\log(\frac{1}{\epsilon}))$ iteration complexity, where each iteration consists of a Newton update based on the Nesterov-Todd direction. Our algorithm is based on a formulation of the problem which is a generalized version of the Von Neumann optimal growth problem. Next, we specialize to one-sided optimal diagonal preconditioning problems, and demonstrate that they can be formulated as standard dual SDP problems, to which we apply efficient customized solvers and study the empirical performance of our optimal diagonal preconditioners. Our extensive experiments on large matrices demonstrate the practical appeal of optimal diagonal preconditioners at reducing condition numbers compared to heuristics-based preconditioners.
翻译:在优化和机器学习方面,前导是主机优化和机器学习的主要技术。 它经常降低其应用的矩阵的条件数量, 从而加快优化算法的趋同。 虽然在实践中有许多流行的前提条件技术, 但大多缺乏减少条件数的理论保障。 在本文中, 我们研究最佳对数的先决条件问题, 以便通过分别或同时调整其行或列, 实现最大程度降低任何全端矩阵的条件数量。 我们首先将问题重新定位为准螺旋问题, 并提供一种易于在实践中实施的基线双节算法, 即每次循环由SDP可行性问题组成。 然后, 我们提出一种混合时间潜在削减算法, 使用$( log (frac{1unpselon}) ) 来减少条件的理论性能。 本文中, 每个迭代号由基于Nesterov- Toddd方向的牛顿更新数据构成。 我们的算法是基于一个问题的提法, 这是一种基于对Von Neumann最佳增长问题的普遍版本。 下一步, 我们专门用一面最佳的对一面最佳的 Diagoural adal adlogueal sutional sutional sutional sutional subil sutional sutional subilstal sutional sutional sutional sutional subiltitional subilencealtitionaltitional subiltitional sutionaltitional sutional sutional sutional extitionaltitionaltitionaltitional sutional sutional subil subil sublimtitional sublimtique subil subil subil subil subil subil subil subil sutional sutional subal subil suctional subal sublimtique sublimtiquestal subactal subactal suction subal sutional subal subal subal subres。我们双向双向我们双向上, 将我们将