Nearly all simulation-based games have environment parameters that affect incentives in the interaction but are not explicitly incorporated into the game model. To understand the impact of these parameters on strategic incentives, typical game-theoretic analysis involves selecting a small set of representative values, and constructing and analyzing separate game models for each value. We introduce a novel technique to learn a single model representing a family of closely related games that differ in the number of symmetric players or other ordinal environment parameters. Prior work trains a multi-headed neural network to output mixed-strategy deviation payoffs, which can be used to compute symmetric $\varepsilon$-Nash equilibria. We extend this work by making environment parameters into input dimensions of the regressor, enabling a single model to learn patterns which generalize across the parameter space. For continuous and discrete parameters, our results show that these generalized models outperform existing approaches, achieving better accuracy with far less data. This technique makes thorough analysis of the parameter space more tractable, and promotes analyses that capture relationships between parameters and incentives.
翻译:几乎所有模拟游戏都有影响互动激励因素的环境参数,但并未明确纳入游戏模型。为了理解这些参数对战略激励因素的影响,典型的游戏理论分析包括选择一组有代表性的小型数值,为每个数值建造和分析不同的游戏模型。我们采用了一种新颖技术来学习一个单一模型,代表一个在对称玩家数目或其他星系环境参数上各不相同的、密切相关的游戏群。先前的工作是将多头神经网络训练成产出混合战略偏差的回报,可用于计算对称值$\varepsilon$-Nash equilibria。我们通过将环境参数纳入累进器的输入维度来扩展这项工作,使一个单一模型能够学习跨参数空间的通用模式。关于连续和离散参数,我们的结果显示,这些通用模型超越了现有方法,用远小得多的数据实现更准确性。这一技术使参数空间的透彻分析更加可吸引力,并且促进分析参数和激励因素之间的关系。</s>