A self-supervised adaptive low-light video enhancement method, called SALVE, is proposed in this work. SALVE first enhances a few key frames of an input low-light video using a retinex-based low-light image enhancement technique. For each keyframe, it learns a mapping from low-light image patches to enhanced ones via ridge regression. These mappings are then used to enhance the remaining frames in the low-light video. The combination of traditional retinex-based image enhancement and learning-based ridge regression leads to a robust, adaptive and computationally inexpensive solution to enhance low-light videos. Our extensive experiments along with a user study show that 87% of participants prefer SALVE over prior work.


翻译:在这项工作中,提出了一种自监督的适应性低光视频增强方法,称为SALVE。 SALVE首先使用视光外低光图像增强技术,增强输入低光视频的几个关键框架。对于每个关键框架,SALVE学习从低光图像补丁到通过山脊回归增强的图像。然后,这些绘图用于加强低光视频中的剩余框架。传统的视光外图像增强和学习型脊回归相结合,导致一种强健、适应和计算成本低廉的解决方案,以强化低光视频。我们的广泛实验与用户研究表明,87%的参与者更喜欢SALVE而不是先前的工作。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年2月26日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员