The Immersed Boundary Method (IBM) is a popular numerical approach to impose boundary conditions without relying on body-fitted grids, thus reducing the costly effort of mesh generation. To obtain enhanced accuracy, IBM can be combined with high-order methods (e.g., discontinuous Galerkin). For this combination to be effective, an analysis of the numerical errors is essential. In this work, we apply, for the first time, a modified equation analysis to the combination of IBM (based on volume penalization) and high-order methods (based on nodal discontinuous Galerkin methods) to analyze a priori numerical errors and obtain practical guidelines on the selection of IBM parameters. The analysis is performed on a linear advection-diffusion equation with Dirichlet boundary conditions. Three ways to penalize the immerse boundary are considered, the first penalizes the solution inside the IBM region (classic approach), whilst the second and third penalize the first and second derivatives of the solution. We find optimal combinations of the penalization parameters, including the first and second penalizing derivatives, resulting in minimum errors. We validate the theoretical analysis with numerical experiments for one- and two-dimensional advection-diffusion equations.
翻译:光墨边界法(IBM)是一种流行的数字方法,在不依赖体装网格的情况下实施边界条件,从而降低网格的成本。为了提高准确性,IBM可以与高阶方法(如不连续加列金)相结合。为了使这种组合有效,必须对数字错误进行分析。在这项工作中,我们第一次对IBM(基于数量处罚)和高阶方法(基于节奏不连续的Galerkin方法)的组合进行修改的方程式分析,以分析前置数字错误和获得选择IBM参数的实际准则。该分析是在一条线性对反动扩散方程式和Drichlet边界条件进行,考虑惩罚沉积边界的三种方法,首先惩罚IBM区域内的解决方案(典型方法),第二和第三种惩罚解决办法的第一和第二衍生物。我们发现惩罚参数的最佳组合,包括第一和第二种惩罚衍生物,导致最低误差的第一和第二种惩罚性衍生物。我们用一个数字和两个数字式模型来验证理论式模型。