Finite volume methods are popular tools for solving time-dependent partial differential equations, especially hyperbolic conservation laws. Over the past 40 years a popular way of enlarging their robustness was the enforcement of global or local entropy inequalities. This work focuses on a different entropy criterion proposed by Dafermos almost 50 years ago, stating that the weak solution should be selected that dissipates a selected entropy with the highest possible speed. We show that this entropy rate criterion can be used in a numerical setting if it is combined with the theory of optimal recovery. To date, this criterion has only seen limited use in Finite-Volume schemes and to the authors knowledge this work is the first in which this criterion is applied to a Finite-Volume scheme whose accuracy is based on reconstruction from mean values. This leads to a new family of schemes based on reconstruction providing an alternative to the popular ENO and WENO schemes.
翻译:限量计算法是解决基于时间的局部偏差方程式,特别是双曲保护法的流行工具。在过去40年中,扩大其稳健性的一种流行方式是执行全球或地方的对流不平等。这项工作侧重于Dafermos 近50年前提出的不同的对流标准,指出应选择以尽可能高的速度将选定的对流体分解掉的薄弱解决办法。我们表明,这一对流率标准如果与最佳恢复理论相结合,可以在数字环境中使用。迄今为止,这一标准在Finite-Volume计划中的使用有限,而对于作者来说,这项工作是第一个将这一标准应用于一个基于从中值重建的对流计划,其准确性基于中值的重建的Finite-Volum计划。这导致了以重建为基础的新组合,为流行的 ENO 和 WENO 计划提供了替代方案。