Splines over triangulations and splines over quadrangulations (tensor product splines) are two common ways to extend bivariate polynomials to splines. However, combination of both approaches leads to splines defined over mixed triangle and quadrilateral meshes using the isogeometric approach. Mixed meshes are especially useful for representing complicated geometries obtained e.g. from trimming. As (bi)-linearly parameterized mesh elements are not flexible enough to cover smooth domains, we focus in this work on the case of planar mixed meshes parameterized by (bi)-quadratic geometry mappings. In particular we study in detail the space of $C^1$-smooth isogeometric spline functions of general polynomial degree over two such mixed mesh elements. We present the theoretical framework to analyze the smoothness conditions over the common interface for all possible configurations of mesh elements. This comprises the investigation of the dimension as well as the construction of a basis of the corresponding $C^1$-smooth isogeometric spline space over the domain described by two elements. Several examples of interest are presented in detail.
翻译:在三角形和四边线上,三角形的浮点和浮点的浮点和浮点在四角形(十角产品样条)上,是将双差多元度的参数扩展至浮点的两种常见方法。但是,这两种方法的结合导致使用等相测量法在混合三角和四边间歇物上界定的浮点。混合间歇对于代表从三角形等取来的复杂地形特别有用。由于(双)线性参数化网格元素不够灵活,不足以覆盖平滑的域,因此我们在本工作中侧重于用(二)二次水面-水面几何测图绘制的平面混合间歇物参数。特别是我们详细研究在两种混合网点元素上一般多边度的 $C$1- mothy等色度的浮点功能。我们介绍了用于分析所有可能的网点组合组合的通用界面的平滑度条件的理论框架。这包括调查维度,以及根据对应的 $C$1$1- momesology 参数绘制的多个空间参数的模型。我们用不同的空间参数来详细分析。我们提出了理论框架。