Latitude on the choice of initialisation is a shared feature between one-step extended state-space and multi-step methods. The paper focuses on lattice Boltzmann schemes, which can be interpreted as examples of both previous categories of numerical schemes. We propose a modified equation analysis of the initialisation schemes for lattice Boltzmann methods, determined by the choice of initial data. These modified equations provide guidelines to devise and analyze the initialisation in terms of order of consistency with respect to the target Cauchy problem and time smoothness of the numericalsolution. In detail, the larger the number of matched terms between modified equations for initialisation and bulk methods, the smoother the obtained numerical solution. This is particularly manifest for numerical dissipation. Starting from the constraints to achieve time smoothness, which can quickly become prohibitive, we explain how the distinct lack of observability for certain lattice Boltzmann schemes -- seen as dynamical systems on a commutative ring -- can yield rather simple conditions and be easily studied as far as their initialisation is concerned. This comes from the reduced numberof initialisation schemes at the fully discrete level. These theoretical results are successfully assessed on several lattice Boltzmann methods.
翻译:初始化选择的纬度是单步扩展的状态空间和多步方法的共同特征。 本文侧重于 lattice Boltzmann 方案, 它可以被解释为前两类数字方法的示例。 我们提议对由初始数据选择决定的 lattice Boltzmann 方法的初始化方案进行修改的方程式分析。 这些修改的方程式为设计和分析初始化提供了指南, 以便设计和分析与目标Cauchy 问题和数字解析时间的平稳一致性相一致的顺序。 详细来说, 初始化和散装方法的修改方程式之间匹配的条件数量越多, 获得的数字解决方案越平滑。 这在数字消散方面尤为明显。 从制约因素开始, 实现时间平稳, 很快变得令人望而望而望而生。 我们解释为什么某些 Lattice Boltzmann 方案明显缺乏可观测性, 被视为一种通俗的交环上的动态系统, 能够产生相当简单的条件, 并且在其初始化方面很容易研究。 这来自完全离离的初始化计划的初始化计划数量减少。 这些理论结果被成功地评估了。