In this paper we introduce a novel abstract descent scheme suited for the minimization of proper and lower semicontinuous functions. The proposed abstract scheme generalizes a set of properties that are crucial for the convergence of several first-order methods designed for nonsmooth nonconvex optimization problems. Such properties guarantee the convergence of the full sequence of iterates to a stationary point, if the objective function satisfies the Kurdyka-Lojasiewicz property. The abstract framework allows for the design of new algorithms. We propose two inertial-type algorithms with implementable inexactness criteria for the main iteration update step. The first algorithm, i$^2$Piano, exploits large steps by adjusting a local Lipschitz constant. The second algorithm, iPila, overcomes the main drawback of line-search based methods by enforcing a descent only on a merit function instead of the objective function. Both algorithms have the potential to escape local minimizers (or stationary points) by leveraging the inertial feature. Moreover, they are proved to enjoy the full convergence guarantees of the abstract descent scheme, which is the best we can expect in such a general nonsmooth nonconvex optimization setup using first-order methods. The efficiency of the proposed algorithms is demonstrated on two exemplary image deblurring problems, where we can appreciate the benefits of performing a linesearch along the descent direction inside an inertial scheme.
翻译:在本文中,我们引入了一个新的抽象下游计划,适合最大限度地减少适当和较低的半连续功能。 拟议的抽象计划概括了一套对于整合为非移动非convex优化问题设计的若干一阶方法至关重要的属性。 这些属性保证了迭代的完整序列与固定点相融合, 如果目标功能满足了 Kurdyka- Lojasiewicz 属性。 抽象框架允许设计新的算法。 我们为主要的迭代更新步骤提出了两种具有可执行性不灵敏标准的惯性型算法。 第一个算法, i$2$Piano, 通过调整本地的 Lipschitz 常数来利用大型步骤。 第二个算法, iPila, 克服了基于线性研究方法的主要偏差, 其方法是只执行一种优点功能, 而不是目标函数。 这两种算法都有可能利用惯性特征来逃避当地最小化的算法( 或固定点) 。 此外, 它们被证明享有抽象的下游计划的全面趋一致保证, 这是我们所期望的内行最佳的惯性排序方法。 在这种结构上, 我们所展示的一种最高级的排序上, 一种不升级的方法可以展示一种不升级的方法。