Recent image degradation estimation methods have enabled single-image super-resolution (SR) approaches to better upsample real-world images. Among these methods, explicit kernel estimation approaches have demonstrated unprecedented performance at handling unknown degradations. Nonetheless, a number of limitations constrain their efficacy when used by downstream SR models. Specifically, this family of methods yields i) excessive inference time due to long per-image adaptation times and ii) inferior image fidelity due to kernel mismatch. In this work, we introduce a learning-to-learn approach that meta-learns from the information contained in a distribution of images, thereby enabling significantly faster adaptation to new images with substantially improved performance in both kernel estimation and image fidelity. Specifically, we meta-train a kernel-generating GAN, named MetaKernelGAN, on a range of tasks, such that when a new image is presented, the generator starts from an informed kernel estimate and the discriminator starts with a strong capability to distinguish between patch distributions. Compared with state-of-the-art methods, our experiments show that MetaKernelGAN better estimates the magnitude and covariance of the kernel, leading to state-of-the-art blind SR results within a similar computational regime when combined with a non-blind SR model. Through supervised learning of an unsupervised learner, our method maintains the generalizability of the unsupervised learner, improves the optimization stability of kernel estimation, and hence image adaptation, and leads to a faster inference with a speedup between 14.24 to 102.1x over existing methods.


翻译:最近的图像降解估计方法使得单一图像超分辨率(SR)方法得以更好地上映真实世界图像。 在这些方法中,明确的内核估计方法显示了处理未知降解的空前性能。 尽管如此,下游SR模型使用时,一些限制限制了其效力。具体地说,这种方法的组合产生i)由于长期的人均图像适应时间而导致过度的推断时间,以及(二)由于内核错配,图像的忠诚度较低。在这项工作中,我们采用了一种从图像分发中所含信息中取出的学习到阅读的方法,从而能够大大加快对新图像的适应速度,同时大幅改进内核估计和图像忠诚性。具体地说,我们在一系列任务上,对产生内核的GAN(名为MetaKernelGAN)的内核内核电,因此当出现新图像时,发电机从知情的内核内核估计开始,而导导体以14种强大的能力来分辨离分布。 与非艺术状态的估算方法相比,我们进行更快速的对新图像的更精确性调整,我们进行的实验显示,在不易变的系统内核的系统内核的变变变变的系统内,在一个更精确的系统内, 的系统内,在一个更精确的计算中,使一个更精确的系统内核的系统内核的变变。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员