Let $f$ be a polynomial of degree $d$ in $n$ variables over a finite field $\mathbb{F}$. The polynomial is said to be unbiased if the distribution of $f(x)$ for a uniform input $x \in \mathbb{F}^n$ is close to the uniform distribution over $\mathbb{F}$, and is called biased otherwise. The polynomial is said to have low rank if it can be expressed as a composition of a few lower degree polynomials. Green and Tao [Contrib. Discrete Math 2009] and Kaufman and Lovett [FOCS 2008] showed that bias implies low rank for fixed degree polynomials over fixed prime fields. This lies at the heart of many tools in higher order Fourier analysis. In this work, we extend this result to all prime fields (of size possibly growing with $n$). We also provide a generalization to nonprime fields in the large characteristic case. However, we state all our applications in the prime field setting for the sake of simplicity of presentation. Using the above generalization to large fields as a starting point, we are also able to settle the list decoding radius of fixed degree Reed-Muller codes over growing fields. The case of fixed size fields was solved by Bhowmick and Lovett [STOC 2015], which resolved a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008]. Here, we show that the list decoding radius is equal the minimum distance of the code for all fixed degrees, even when the field size is possibly growing with $n$. Additionally, we effectively resolve the weight distribution problem for Reed-Muller codes of fixed degree over all fields, first raised in 1977 in the classic textbook by MacWilliams and Sloane [Research Problem 15.1 in Theory of Error Correcting Codes].
翻译:美元 美元 美元 是 美元 美元 的 多边 美元 美元 。 如果 美元 (x) 美元 用于 统一输入 $x\ mathbb{ F\\ 美元 美元 美元 接近 $\ mathbb{ F} 美元 的统一分配, 并被称之为 偏差 。 多边 的 等级 较低 美元 。 如果 以 有限 字段 $\\ mathb{ F} 以 美元 的 美元变量表示 美元 。 则 多元 多边 的 等级 是不 。 绿色 和 Tao [Contrib. discrecrete Math 2009] 和 Kaufman 和 Lovett [FOC2008] 表示 美元 美元 美元 (xxx) 美元 美元 美元 的分布情况是没有偏差 。 这在更高级分析中, 我们将此结果扩展到所有主要字段 (可能以 $n$ 美元 来 ) 的 。 在大特性中, 直径字段 直径 显示 直径 直径 直方 直方 直方 直方 直方 。