In this work, we analyze the eigenvalue spectra and stability of discrete-time dynamical systems parametrized by deep neural networks. In particular, we leverage a representation of deep neural networks as pointwise affine maps, thus exposing their local linear operators and making them accessible to classical system analytic methods.The view of neural networks as affine parameter varying maps allows us to "crack open the black box" of neural network dynamical behavior by visualizing stationary points, state-space partitioning, and eigenvalue spectra. We provide sufficient conditions for the fixed-point stability of discrete-time deep neural dynamical systems. Empirically, we analyze the variance in dynamical behavior and eigenvalue spectra of local linear operators of neural dynamics with varying weight factorizations, activation functions, bias terms, and depths.
翻译:在这项工作中,我们分析了由深神经网络合成的离散时间动态系统光谱和稳定性。特别是,我们利用深神经网络的体现作为点针形线形图,从而暴露其局部线性操作员,并使它们能为古典系统分析方法所利用。 将神经网络视为离子参数的不同地图使我们能够通过可视化固定点、状态空间分隔和乙基值光谱,“打开黑盒”神经网络动态行为。我们为离散时间深神经动态系统的固定点稳定性提供了充分的条件。我们同时分析了具有不同重量因子化、激活功能、偏差条件和深度的神经动态的当地线性操作员在动态行为和超值光值光谱上的差异。