A major problem in fair division is how to allocate a set of indivisible resources among agents fairly and efficiently. We give optimal tradeoffs between fairness and efficiency, with respect to well-studied measures of fairness and efficiency -- envy freeness up to any item (EFX) for fairness, and Nash welfare for efficiency. Our results improve upon the current state of the art, for both additive and subadditive valuations. For additive valuations, we show the existence of allocations that are simultaneously $\alpha$-EFX and guarantee a $\frac{1}{\alpha+1}$-fraction of the maximum Nash welfare, for any $\alpha\in[0,1]$. For $\alpha\in[0,\varphi-1 \approx 0.618]$ these are complete allocations (all items are assigned), whereas for larger $\alpha$ these are partial allocations (some items may be unassigned). We partially extend this to subadditive valuations where we show the existence of complete allocations that give $\alpha$-EFX and a $\frac{1}{\alpha+1}$-fraction of the maximum Nash welfare (as above), for any $\alpha\in[0,1/2]$. We also give impossibility results that show that our tradeoffs are tight, even with respect to partial allocations.
翻译:公平分工中的一个主要问题是,如何在代理人之间公平和高效地分配一系列不可分割的资源。我们在公平和效率方面,在公平和效率方面,我们给公平和效率之间的最佳权衡 -- -- 嫉妒任何项目(EFX)的公平性和效率,以及纳什的效益。我们的成果在最新水平上有所改进,包括添加值和追加值。对于添加值和追加值,我们显示了同时存在美元-EFX的分配款,并保证在任何经充分研究的公平和效率措施方面,在公平和效率之间,我们给公平和效率之间的最佳权衡 -- -- 嫉妒自由至任何项目(EFX)的公平性,以及纳什的效益。对于[0,\varphi-1\approx 0.618]美元,这些是完整的分配款(所有项目都被分配),而对于较大的美元是部分分配款(有些项目可能未被分配款)。我们部分地将这一分配款扩大到了次追加估值,因为我们展示了给予美元-EFX+1+1美元和1美元最高纳什福利的全额分配款,我们也是对最高分配款的全额分配款。