Given a linear differential equation with coefficients in $\mathbb{Q}(x)$, an important question is to know whether its full space of solutions consists of algebraic functions, or at least if one of its specific solutions is algebraic. After presenting motivating examples coming from various branches of mathematics, we advertise in an elementary way a beautiful local-global arithmetic approach to these questions, initiated by Grothendieck in the late sixties. This approach has deep ramifications and leads to the still unsolved Grothendieck-Katz $p$-curvature conjecture.
翻译:给定一个系数在 $\mathbb{Q}(x)$ 中的线性微分方程,一个重要的问题是要知道它的全体解是否由代数函数构成,或者至少其中一个特定解是否是代数的。在介绍来自数学各个分支的激励性例子之后,我们以一种基础的方式广告了一个美妙的基于本地-全局算术的方法去回答这些问题,这种方法是Grothendieck在60年代后期创立的。这种方法有深远的影响,并引出了仍未解决的Grothendieck-Katz $p$-曲率猜想。