We present a framework for learning disentangled representation of CapsNet by information bottleneck constraint that distills information into a compact form and motivates to learn an interpretable factorized capsule. In our $\beta$-CapsNet framework, hyperparameter $\beta$ is utilized to trade-off disentanglement and other tasks, variational inference is utilized to convert the information bottleneck term into a KL divergence that is approximated as a constraint on the mean of the capsule. For supervised learning, class independent mask vector is used for understanding the types of variations synthetically irrespective of the image class, we carry out extensive quantitative and qualitative experiments by tuning the parameter $\beta$ to figure out the relationship between disentanglement, reconstruction and classfication performance. Furthermore, the unsupervised $\beta$-CapsNet and the corresponding dynamic routing algorithm is proposed for learning disentangled capsule in an unsupervised manner, extensive empirical evaluations suggest that our $\beta$-CapsNet achieves state-of-the-art disentanglement performance compared to CapsNet and various baselines on several complex datasets both in supervision and unsupervised scenes.


翻译:我们提出了一个框架,用于通过信息瓶颈限制来学习CapsNet的分解代表,这种框架将信息蒸馏成一个紧凑的形式,并激励人们学习可解释的分系数胶囊。 在我们的$Beta$-CapsNet框架内,超参数$\beta$被用于权衡分解和其他任务,使用变式推论将信息瓶颈术语转换成KL差分,这大概是胶囊平均值的限制因素。在监督学习中,使用等级独立的遮罩矢量来理解合成的变异类型,而不论图像类别如何,我们通过调整参数$\beeta$进行广泛的定量和定性实验,以找出分解、重建和分级性能之间的关系。此外,为了以不超常方式学习解结的胶囊,提出了无超常的 $Beta$-CapsNet 和相应的动态路由算法。 广泛的实证评估表明,我们的$\beeta$CaptsNet在不连续的图像中实现状态和不连续的监控。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2021年6月30日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员