We present a framework for learning disentangled representation of CapsNet by information bottleneck constraint that distills information into a compact form and motivates to learn an interpretable factorized capsule. In our $\beta$-CapsNet framework, hyperparameter $\beta$ is utilized to trade-off disentanglement and other tasks, variational inference is utilized to convert the information bottleneck term into a KL divergence that is approximated as a constraint on the mean of the capsule. For supervised learning, class independent mask vector is used for understanding the types of variations synthetically irrespective of the image class, we carry out extensive quantitative and qualitative experiments by tuning the parameter $\beta$ to figure out the relationship between disentanglement, reconstruction and classfication performance. Furthermore, the unsupervised $\beta$-CapsNet and the corresponding dynamic routing algorithm is proposed for learning disentangled capsule in an unsupervised manner, extensive empirical evaluations suggest that our $\beta$-CapsNet achieves state-of-the-art disentanglement performance compared to CapsNet and various baselines on several complex datasets both in supervision and unsupervised scenes.
翻译:我们提出了一个框架,用于通过信息瓶颈限制来学习CapsNet的分解代表,这种框架将信息蒸馏成一个紧凑的形式,并激励人们学习可解释的分系数胶囊。 在我们的$Beta$-CapsNet框架内,超参数$\beta$被用于权衡分解和其他任务,使用变式推论将信息瓶颈术语转换成KL差分,这大概是胶囊平均值的限制因素。在监督学习中,使用等级独立的遮罩矢量来理解合成的变异类型,而不论图像类别如何,我们通过调整参数$\beeta$进行广泛的定量和定性实验,以找出分解、重建和分级性能之间的关系。此外,为了以不超常方式学习解结的胶囊,提出了无超常的 $Beta$-CapsNet 和相应的动态路由算法。 广泛的实证评估表明,我们的$\beeta$CaptsNet在不连续的图像中实现状态和不连续的监控。