Transformation-robustness is an important feature for machine learning models that perform image classification. Many methods aim to bestow this property to models by the use of data augmentation strategies, while more formal guarantees are obtained via the use of equivariant models. We recognise that compositional, or part-whole structure is also an important aspect of images that has to be considered for building transformation-robust models. Thus, we propose a capsule network model that is, at once, equivariant and compositionality-aware. Equivariance of our capsule network model comes from the use of equivariant convolutions in a carefully-chosen novel architecture. The awareness of compositionality comes from the use of our proposed novel, iterative, graph-based routing algorithm, termed Iterative collaborative routing (ICR). ICR, the core of our contribution, weights the predictions made for capsules based on an iteratively averaged score of the degree-centralities of its nearest neighbours. Experiments on transformed image classification on FashionMNIST, CIFAR-10, and CIFAR-100 show that our model that uses ICR outperforms convolutional and capsule baselines to achieve state-of-the-art performance.


翻译:变形- 紫外线是进行图像分类的机器学习模型的一个重要特征。 许多方法的目的是通过使用数据增强战略将这种属性赋予模型,同时通过使用等同模型获得更正式的保障。 我们认识到,组成结构或半整体结构也是图像的一个重要方面,在建设变形- 紫外线模型时必须考虑的图像中也是如此。因此,我们提议一个胶囊网络模型,它同时具有等差性和成份性;我们胶囊网络模型的均匀性来自在精心选取的新结构中使用的静态相变组合。对组成性的认识来自我们拟议的新颖的、迭代的、基于图表的路线算法,称为迭代式合作路线(ICR)。 ICR是我们贡献的核心,是根据其近邻不同程度程度的迭代平均分数对胶囊所作的预测。实验来自对Fashion MNIST、CIFAR- 10和CIFAR- 100的图像转换分类的实验。 模型显示,我们使用ICRFRA- Contramal 的模模模范号,即ICRADRADRA- Contral。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员