We devise coresets for kernel $k$-Means with a general kernel, and use them to obtain new, more efficient, algorithms. Kernel $k$-Means has superior clustering capability compared to classical $k$-Means, particularly when clusters are non-linearly separable, but it also introduces significant computational challenges. We address this computational issue by constructing a coreset, which is a reduced dataset that accurately preserves the clustering costs. Our main result is a coreset for kernel $k$-Means that works for a general kernel and has size $\mathrm{poly}(k\epsilon^{-1})$. Our new coreset both generalizes and greatly improves all previous results; moreover, it can be constructed in time near-linear in $n$. This result immediately implies new algorithms for kernel $k$-Means, such as a $(1+\epsilon)$-approximation in time near-linear in $n$, and a streaming algorithm using space and update time $\mathrm{poly}(k \epsilon^{-1} \log n)$. We validate our coreset on various datasets with different kernels. Our coreset performs consistently well, achieving small errors while using very few points. We show that our coresets can speed up kernel $k$-Means++ (the kernelized version of the widely used $k$-Means++ algorithm), and we further use this faster kernel $k$-Means++ for spectral clustering. In both applications, we achieve up to 1000x speedup while the error is comparable to baselines that do not use coresets.


翻译:我们为内核 $k$-Means 设计核心套件,用普通内核来获取新的、更有效率的算法。 Kernel $k$-Means 与古典的美元-Means 相比,拥有更高的组群能力,特别是当集群不线性分离时,它也带来了巨大的计算挑战。我们通过构建一个核心套件来解决这个计算问题,这是一个减少的数据集,可以准确保存集群成本。我们的主要结果是为内核 $k$-Means 的核心套件,该套件为一般内核工作,并且有美元-美元(poly}(klepsol)-Means) 的大小。我们的新核心套件既能概括,又能大大改进所有以前的结果;此外,它也可以在时间-线性内建一个核心套件,比如美元-美元-美元-套件-套件的内值-内值-套件-内值-美元-内值-内值-内值-内值-内值-内值的内值-值-内值-内值-内值的内值-内值-内值-内存的值-值-值-内值-内值-内值-内值-内值-值-内算算算算算-值-值-值-值-内值-内,并用一个基值-内基值-内-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内值-内存-内存-内存-内存-内存-内存-内-内-内-内-内-内-内-内-内存-内-内-内-内-内-内-内-内-内存-内-内-内-内存-内存-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内-内存-内存-内-内存-内存-内存-内存-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员