We investigate solution methods for large-scale inverse problems governed by partial differential equations (PDEs) via Bayesian inference. The Bayesian framework provides a statistical setting to infer uncertain parameters from noisy measurements. To quantify posterior uncertainty, we adopt Markov Chain Monte Carlo (MCMC) approaches for generating samples. To increase the efficiency of these approaches in high-dimension, we make use of local information about gradient and Hessian of the target potential, also via Hamiltonian Monte Carlo (HMC). Our target application is inferring the field of soil permeability processing observations of pore pressure, using a nonlinear PDE poromechanics model for predicting pressure from permeability. We compare the performance of different sampling approaches in this and other settings. We also investigate the effect of dimensionality and non-gaussianity of distributions on the performance of different sampling methods.
翻译:我们通过Bayesian推论,调查由部分差异方程(PDEs)管理的大规模反向问题的解决办法。Bayesian框架为从噪音测量中推导不确定参数提供了统计背景。为了量化后端不确定因素,我们采用了Markov 链子蒙特卡洛(MCMC)方法来生成样品。为了提高这些方法在高差异中的效率,我们利用当地关于梯度和目标潜力的Hessian的信息,也通过Hamiltonian Monte Carlo(HMC)进行。我们的目标应用是推断土壤渗透性处理孔隙压力观测的面积,使用非线性PDE 质谱机械模型来预测来自渗透性的压力。我们比较了不同采样方法在这种环境和其他环境中的性能。我们还调查了分布对不同采样方法性的影响。