A central goal of modern magnetic resonance imaging (MRI) is to reduce the time required to produce high-quality images. Efforts have included hardware and software innovations such as parallel imaging, compressed sensing, and deep learning-based reconstruction. Here, we propose and demonstrate a Bayesian method to build statistical libraries of magnetic resonance (MR) images in k-space and use these libraries to identify optimal subsampling paths and reconstruction processes. Specifically, we compute a multivariate normal distribution based upon Gaussian processes using a publicly available library of T1-weighted images of healthy brains. We combine this library with physics-informed envelope functions to only retain meaningful correlations in k-space. This covariance function is then used to select a series of ring-shaped subsampling paths using Bayesian optimization such that they optimally explore space while remaining practically realizable in commercial MRI systems. Combining optimized subsampling paths found for a range of images, we compute a generalized sampling path that, when used for novel images, produces superlative structural similarity and error in comparison to previously reported reconstruction processes (i.e. 96.3% structural similarity and <0.003 normalized mean squared error from sampling only 12.5% of the k-space data). Finally, we use this reconstruction process on pathological data without retraining to show that reconstructed images are clinically useful for stroke identification.
翻译:现代磁共振成像 (MRI) 的一个中心目标是减少生成高质量图像所需的时间。努力包括硬件和软件创新,如并行成像、压缩感知和基于深度学习的重建。在这里,我们提出并证明了一种贝叶斯方法,用于构建磁共振 (MR) 图像库的统计学,并使用这些库来识别最佳的子取样路径和重建过程。具体而言,我们使用一组健康大脑 T1 加权图像的公共可用库计算基于高斯过程的多元正态分布。我们结合这个库与物理学注入的包络函数只保留 k-空间中有意义的相关性。然后,使用这个协方差函数,使用贝叶斯优化选择一系列环形子采样路径,使它们在探索空间时最优,并保持在商业 MRI 系统中实用。将找到的优化子采样路径组合起来,我们计算出一个广义的采样路径,当用于新的图像时,与之前报告的重建过程相比,可以产生卓越的结构相似性和误差 (即结构相似性为96.3%,采样 k-空间数据的仅为12.5%时,标准化均方误差小于0.003)。最后,我们使用这个重建过程对病理学数据进行识别,而不需要经过重新训练,以表明重建图像在中风识别方面具有临床用途。