Entanglement distillation is crucial in quantum information processing. But it remains challenging to estimate the distillable entanglement and its closely related essential quantity, the quantum capacity of a noisy quantum channel. In this work, we propose methods for evaluating both quantities by squeezing out useless entanglement within a state or a quantum channel, whose contributions are expected to be ignored for the distillable entanglement or the quantum capacity, respectively. We first consider a general resource measure called the reverse divergence of resources to quantify the minimum divergence between a target state and the set of free states. We then introduce the reverse max-relative entropy of entanglement and apply it to establish efficiently computable upper bounds on the distillable entanglement. We also extend the reverse divergence of resources to quantum channels and derive upper bounds on the quantum capacity. We further apply our method to investigate purifying the maximally entangled states under practical noises, such as depolarizing and amplitude damping noises, and notably establish improvements in estimating the one-way distillable entanglement. Our bounds also offer useful benchmarks for evaluating the quantum capacities of qubit quantum channels of interest, including the Pauli channels and the random mixed unitary channels.


翻译:在量子信息处理过程中,内层蒸馏是关键。但是,估计可蒸馏的纠结及其密切相关的基本数量,即一个噪音量子信道的量子容量,仍然具有挑战性。在这项工作中,我们建议了两种数量评价方法,方法是通过挤压一个状态或量子通道内无用的纠结,预计它们的贡献将分别因可蒸馏的缠绕或量子容量而被忽视。我们首先考虑一种一般资源措施,称为资源逆差,以量化目标状态和自由国家组合之间的最小差异。然后我们引入了串结的逆最大粘合,并应用它来在可蒸馏的缠绕中建立高效的可调和上限。我们还将资源逆差扩大到量子通道,并从量子容量的上层中获取。我们进一步运用我们的方法,在实际噪音下净化最深层纠结的国家,例如分解和调噪噪声,并特别确定在估算单层可蒸馏的最大悬结的悬浮性悬浮性悬浮性悬浮性悬浮性熔度中进行改进。我们还提出用于评估单端的碳熔化的量度轨道的能力基准。</s>

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员