Counterfactual invariance has proven an essential property for predictors that are fair, robust, and generalizable in the real world. We propose a general definition of counterfactual invariance and provide simple graphical criteria that yield a sufficient condition for a predictor to be counterfactually invariant in terms of (conditional independence in) the observational distribution. Any predictor that satisfies our criterion is provably counterfactually invariant. In order to learn such predictors, we propose a model-agnostic framework, called Counterfactual Invariance Prediction (CIP), based on a kernel-based conditional dependence measure called Hilbert-Schmidt Conditional Independence Criterion (HSCIC). Our experimental results demonstrate the effectiveness of CIP in enforcing counterfactual invariance across various types of data including tabular, high-dimensional, and real-world dataset.
翻译:事实证明,反事实失常是预测者在现实世界中具有的公平、稳健和普遍适用的基本属性。我们提出了一个反事实失常的一般定义,并提供简单的图形标准,为预测者在观察分布(有条件独立)方面产生足够的反实际失常条件。任何符合我们标准的预测者都是反实际失常的。为了了解这些预测者,我们根据基于内核的有条件依赖性措施,即Hilbert-Schmidt 有条件独立标准(HSCIC),提出了称为反事实失常预测的模型-不可知框架。我们的实验结果表明,CIP在对包括表格、高维量和实际世界数据集在内的各类数据实施反事实失常方面是有效的。